Geospatial data analysis with python

Learn how to read, write and visualize the raster/vector dataset and perform spatial analysis using python

Geospatial data is also known as spatial data. It contains the locational information of the things or objects. In this course, we are going to read the data from various sources (like from spatial database) and formats (like shapefile, geojson, geo package, GeoTIFF etc), perform the spatial analysis and try to find insights for spatial data. In this course, we lay the foundation for a career in the Geospatial community.

What you’ll learn

  • Reading and writing of geospatial data.
  • Visualization of geospatial data using python.
  • Benefits of python over GIS software.
  • Resampling, reprojection, reclassification of data.
  • Most essential geospatial libraries.
  • Essential things for geopandas, fiona, shapely, rasterio etc.

Course Content

  • Introduction –> 3 lectures • 7min.
  • Vector data analysis –> 10 lectures • 56min.
  • Case study on vector data –> 3 lectures • 16min.
  • Basic of raster data analysis –> 7 lectures • 34min.
  • Raster data analysis (Advance) –> 7 lectures • 52min.

Geospatial data analysis with python

Requirements

  • Basic programming knowledge.
  • Basic understanding about the geospatial data.

Geospatial data is also known as spatial data. It contains the locational information of the things or objects. In this course, we are going to read the data from various sources (like from spatial database) and formats (like shapefile, geojson, geo package, GeoTIFF etc), perform the spatial analysis and try to find insights for spatial data. In this course, we lay the foundation for a career in the Geospatial community.

 

Here is the list of topics that I covered in this course,

  • Installation of required geospatial libraries (GDAL, GeoPandas, rasterio, fiona, shapely, pandas, numpy etc)
  • Reading and Writing the spatial data from various sources/formats
  • Visualization of geospatial data using python
  • Working with the attribute table and geometries
  • Resampling, Reprojection, and Reclassification of satellite data
  • Mathematical operation with Raster
  • NDVI calculation using NIR and RED band

 

Here are the introductions to the main topics that are covered in this course:

 

GeoPandas: It is the open-source python package for reading, writing and analyzing the vector dataset. It extends the datatypes used by pandas to allow spatial operations on geometric types. It further depends on fiona for file access and matplotlib for visualization of data.

 

Rasterio: It is a GDAL and Numpy-based Python library designed to make your work with geospatial raster data more productive, and fast. Rasterio reads and writes raster file formats and provides a Python API based on Numpy N-dimensional arrays and GeoJSON.

 

Shapely: It is the open-source python package for dealing with the vector dataset.

 

Fiona: It can read and writes geographic data files and thereby helps Python programmers integrate geographic information systems with other computer systems. Fiona contains extension modules that link the Geospatial Data Abstraction Library (GDAL).

 

Each section contains a summary and a walkthrough with code examples that will help you learn more effectively. After completing this course, you will be confident to do the spatial analysis by python. You can automate the processing of your geospatial data without GIS software (eg. ArcGIS, QGIS etc).